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CONS P EC TU S

W hen applied to biomolecules, solid-state NMR suffers from low sensitivity and resolution. The major obstacle to applying
proton detection in the solid state is the proton dipolar network, and deuteration can help avoid this problem. In the past,

researchers had primarily focused on the investigation of exchangeable protons in these systems.
In this Account, we review NMR spectroscopic strategies that allow researchers to observe aliphatic non-exchangeable proton

resonances in proteins with high sensitivity and resolution. Our labeling scheme is based on u-[2H,13C]-glucose and 5�25% H2O
(95�75% D2O) in the M9 bacterial growth medium, known as RAP (reduced adjoining protonation). We highlight spectroscopic
approaches for obtaining resonance assignments, a prerequisite for any study of structure and dynamics of a protein by NMR
spectroscopy. Because of the dilution of the proton spin system in the solid state, solution-state NMR 1HCC1H type strategies
cannot easily be transferred to these experiments. Instead, we needed to pursue (1H)CC1H, CC1H, 1HCC or (2H)CC1H type
experiments. In protonated samples, we obtained distance restraints for structure calculations from samples grown in bacteria in
media containing [1,3]-13C-glycerol, [2]-13C-glycerol, or selectively enriched glucose to dilute the 13C spin system. In RAP-labeled
samples, we obtained a similar dilution effect by randomly introducing protons into an otherwise deuterated matrix. This isotopic
labeling scheme allows us to measure the long-range contacts among aliphatic protons, which can then serve as restraints for the
three-dimensional structure calculation of a protein. Due to the high gyromagnetic ratio of protons, longer range contacts are more
easily accessible for these nuclei than for carbon nuclei in homologous experiments.

Finally, the RAP labeling scheme allows access to dynamic parameters, such as longitudinal relaxation times T1, and order
parameters S2 for backbone and side chain carbon resonances. We expect that these measurements will open up new
opportunities to obtain a more detailed description of protein backbone and side chain dynamics.

Introduction
In the solid-state, generally heteronuclei are detected as

strong dipole�dipole interactions often prevent the sensi-

tive detection of individual protons. Due to its high gyro-

magnetic ratio, the proton, however, is the ideal nucleus

for detection and correlation spectroscopy. Three strategies

in principle allow to tackle the line width problem: fast

spinning, homonuclear decoupling, and dilution of the

proton spin bath. Ultrafast MAS (60�70 kHz) has been

pushed forward by Samosonand co-workers1 andhas been

applied recently successfully to uniformly protonated sam-

ples by Rienstra, Pintacuda, and Emsley.2,3 1H,1H homo-

nuclear decoupling approaches did not succeed in reducing

theunscaledproton linewidths tovaluesbelow150�300Hz
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(i.e., 0.25�0.5 ppm at 600 MHz).4,5 Deuteration chemically

eliminates proton dipolar interactions. In the solid-state,

deuterationwas first applied to smallmolecules6�8 and then

later extended to peptides9�11 and proteins.4,12�14 Thereby,

nonexchangeable sites are deuterated in the first place. The

amount of H2O/D2O in the crystallization buffer allows

adjustment of the proton concentration at exchangeable

sites to yield sufficiently reduced proton dipolar couplings at

a given MAS rotation frequency.15�17 The labeling scheme

could successfully be applied to amyloid fibrils,18�20 mem-

brane proteins,18,20,21 and protein�RNA complexes.22 The

spectral quality of the above-mentioned examples appears

to be lower in comparison to microcrystalline protein prep-

arations. We expect, however, that resolution will increase

with improved sample preparations. In fact, bacteriorhodop-

sin yields the most narrow resonances, indicating that

sample homogeneity is an important factor.

Deuteration schemes, which rely on amide back-exchange,

are difficult to implement for proteins, which have very

stable amide protons that do not exchange within months.

Samples can only be efficiently prepared when H/D ex-

change can be catalyzed, for example, by unfolding and

refolding of the protein, such that labile protons can be

substituted with deuterons from the medium. Refolding to

the native state can be difficult, for example, for membrane

proteins that need to be functionally reconstituted in the

lipid bilayer. H/D exchange can be avoided by employing

specific precursors of amino acid biosynthesis, which yield

specifically ILV methyl labeled samples.23�25 However, this

scheme has the disadvantage that not all aliphatic sites are

accessible. Furthermore, methyl groups in the hydrophobic

core of a protein often cluster, which induces an increased

line width due to dipole mediated line broadening.

We recently presented a labeling scheme, which does not

require an H/D exchange step and retains at the same time

the spectroscopic benefits of high-resolution 1H-detection. In

order to reduce the proton density of nonexchangeable

protons in a protein, we employ a M9 bacterial growth

medium that contains u-[2H,13C]-glucose and 5�25% H2O

(95�75% D2O). The approach is coined RAP (reduced ad-

joining protonation).26 Figure 1 shows a 1H-detected 1H,13C

HMQC spectrum of a microcrystalline R-spectrin SH3 5%

RAP sample. Already at a moderate MAS frequency of 20

kHz and an externalmagnetic field of 14.1 T (600MHz), high

resolution is obtained for the entire aliphatic region.

The experimental proton line widths in Figure 1 vary be-

tween 25 Hz for Thr37γ2 and 60 Hz for Thr37R. The RAP

labeling schemeallows avoidance of high-power decoupling.

A rf field of 2�3 kHz is sufficient to achieve 13C decoupling

using WALTZ-16 during 1H-detection.27 In comparison to

experiments inwhich the residual protonation of a sample is

exploited (originating from the proton impurities of the

utilized 97% isotopically enriched deuterated glucose and

99%D2Omedium), the sensitivity is significantly enhanced.28

The Optimal RAP Sample
The ideal proton concentration in the M9 growth medium

depends on the MAS rotation frequency, which will be

employed later on in the NMR investigation. On one hand,

more protons can potentially increase the achievable sensi-

tivity. On the other hand, proton�proton dipolar interac-

tionswill induce a broadeningof the resonances. In addition,

isotope induced chemical shift changes and the presence of

the isotopomers 13CD2H,
13CDH2, and

13CH3might broaden

the carbon resonances, when too high concentrations of

H2O are employed. For a 5% RAP sample, we find, that the

methyl and backbone proton signal intensities reach a

plateau value at around 40 kHz, employing a 1H,13C HMQC

sequence (Figure 2A).29 For a 25% RAP sample, this plateau

is reached at MAS rotation frequencies of around 60 kHz,

indicating, that this rotation frequency is sufficient to achieve

FIGURE1. MAS solid-state 1H-detected 1H,13CHMQCspectrumof the SH3
domainofR-spectrin.26 The samplewasproducedbygrowingbacteria in a
M9 minimal medium that contains 5% H2O and 95% D2O. The spectrum
was recorded at 600 MHz (14.1 T). The full spectrum (A) is represented
enlarged in panels B, C, and D displaying the 1HR/13CR, 1Hβ/13Cβ, and the
methyl regions, respectively. The intensities for resonances of the methyl
region in panel A have been scaled by a factor of 0.1. Reproduced with
permission from ref 26. Copyright 2010 American Chemical Society.
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an efficient averaging of proton�proton dipolar interac-

tions. This is also reflected in the echo 1H T2 times, which

become equal for the 5% and 25% RAP sample at a MAS

rotation frequency of 60 kHz (Figure 2B). At fast spinning

(40 kHz), the average proton resonance line widths of the

25% RAP samples reach the limiting line width values of the

5% RAP sample (Figure 2C). As the proton concentration is

increased for the 15% and 25% RAP samples, the relative

and absolute intensities of the correlation peaks are in-

creased accordingly (Figure 2D,E).

1H- and 13C-Detected Aliphatic Backbone and
Side Chain Assignment Experiments
Assignments are essential to proceed with investigations of

structure and dynamics. In RAP samples, assignments are

more difficult to obtain in comparison to homogeneously

FIGURE 2. (A) Integral intensity for backbone and methyl resonances for the first FID from a 1H,13C HMQC experiment as a function of the MAS
frequency for SH3RAP samples grownonM9mediumcontaining either 5%or 25%H2O, respectively.29 The signal intensity reaches a plateau at aMAS
frequency of ∼40 (∼60) kHz for the 5% (25%) RAP sample. The sensitivity gain amounts to a factor of ∼3.5 (∼4.5) and ∼2.0 (∼4.0) for backbone and
methyl resonances. (B) 1H signal dephasing inaT2 echoexperimentat20and60kHz. TheT2 time for the25%RAPsample increases from4.6 to8.2msat
higher spinning frequencies andbecomes comparable to thebulk T2 of the5%RAPsample (7.5ms). (C) Averagemethyl andbackbone 1H linewidthasa
function of the MAS frequency for a 5% and 25% RAP sample of R-spectrin SH3. (D) Relative and absolute signal intensities as a function of the MAS
rotation frequency for a 5%, 15%, and 25% SH3 RAP sample. The intensities were extracted for individual resolved resonances from 2D 1H,13C HMQC
spectra. (E) 2D 1H,13C HMQC spectra for a 25%RAP sample at different MAS rotation frequencies. A significant increase in sensitivity for both backbone
and side chain resonances is observed. All spectra are plotted using the samecontour levelswith respect to the noise rmsd. Experimental parameters are
kept the same in all experiments, except for the MAS rotation frequency. Reproduced with permission from ref 29. Copyright 2012 Springer.
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labeled samples, due to the stochastic incorporation of

protons. For that reason, HCCH type experiments cannot

easily be implemented. For RAP samples, complementary

assignment strategies need to be established.We found that

all resonances can be unambiguously assigned using 3D

HCC and CCH type correlation experiments, yielding assign-

ment of ∼90% of the 1HR,13CR backbone and side chain

resonances of a 15% RAP sample of R-spectrin SH3.30 In

both experiments, carbon�carbonmixing is achieved using

an adiabatic RFDR sequence.31 Active recoupling of the
13C,13C dipolar interactions is essential in deuterated sam-

ples, because the transfer amplitudes in proton driven spin

diffusion (PDSD) experiments is typically not sufficient to

yield efficient mixing.

In Figure 3, the performance of the dipolar mixing se-

quences PDSD,32 adiabatic RFDR,31 and RAD/DARR33,34 are

compared, employing a uniformly protonated as well as a

5% RAP sample of R-spectrin SH3. We find similar mixing

performance for a5%RAP labeled sample (B, adiabatic RFDR

spectrum using amixing time of 15ms) in comparison to the

uniformly protonated SH3 sample (A, PDSD spectrum using

a mixing time of 20 ms). Application of PDSD mixing to a

severely proton diluted 5% RAP sample yielded a very

limited number of cross peaks (C), even though the mixing

time was increased to 50 ms. Under these conditions, RAD/

DARR spectra displayed a significantly improved mixing

profile.35 In the experiment, a rf field is applied either on

the 1H channel (D), on the 2H channel (E), or, as recently

proposed,36 simultaneously on the 1H and the 2H channels

(F). Simultaneous irradiation only yieldedmarginal improve-

ments over single-channel irradiation. For the cross peak

Thr32 13Cβ�13CR, we find a relative cross peak intensity of

47% for RFDR and 15% for 1Hþ2H RAD/DARR (the percen-

tage indicates the ratio of the cross peak volume to the sum

of the cross and diagonal peak volumes). In total, the

adiabatic RFDR sequence (subjacent spectrum in black in

plots C�F) displayed by far the best mixing profile among

PDSD and RAD/DARR and was, therefore, employed in 3D

HCC and CCH assignment experiments.30

The 3D CCH experiment exploits 13C PREs to accelerate

data acquisition and proton detection for high sensitivity.37,38

In order to improve the resolution, the spectral width was

reduced to the aliphatic region. Therefore, the CP condition

was optimized to suppress 13CO excitation and prevent

folding artifacts (Figure 3G). Originally, the 3D CCH experi-

ment was recorded with carbon direct excitation. Alterna-

tively, the experiment can be performed by transferring

magnetization simultaneously from the deuteron and the

proton to thecarbon spin.30,39 The3DHCCexperiment allows

easy assignment of 1HR resonances in cases where the 1HR
resonance is perturbed by the solvent signal. Homonuclear

scalar decoupling in the indirect and direct carbon dimension

FIGURE 3. (A) PDSD spectrum of a uniformly [1H,13C,15N]-labeled
R-spectrin SH3 sample recorded at 400MHzand11kHzMAS. Themixing
time was set to 20 ms. (B) Adiabatic RFDR31 spectrum acquired for a 5%
RAPsampleat600MHzand20kHzMAS. Themixingperiodwasadjusted
to 15 ms. This spectrum was used as a reference for panels C�F. The
superimposed red spectra in panels C�F are PDSD and RAD/DARR
spectra with rf irradiation on the 1H, 2H, and 1Hþ2H channel. All spectra
C�Fwere recorded using a total mixing time of 50ms and a 5%SH3 RAP
sample. The rf field strength was set to the n = 1 rotary resonance
condition. (G) Optimization of selective excitation during the 1H,13C CP
magnetization transfer for a 25% RAP sample. 1HN amide protons were
back-exchanged ina30%/70%H2O/D2Obuffer. The 13Coffsetwas set to
the middle of the aliphatic region and the CP contact time to 1 ms. The
spectra were recorded at a MAS frequency of 20 kHz and an external
magnetic field of 16.4 T (700 MHz). Either a (left) linear ramp from 100%
to 75% or (right) no ramp was employed. Omitting the ramp during CP
and optimizing formaximum sensitivity for aliphatic resonances reduced
the CO signals (gray shaded area) by almost a factor of 10.
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allows significant increase in spectral resolution.30,40 Repre-

sentative strip plots of the 3DHCCand the 3DCCHexperiment

are shown in Figure 4. In particular for sequential assignment

experiments, a four-channel probe with high-power capabil-

ities for 1H, 2H, 13C, and 15N in combination with optimum

control strategies to overcome bandwidth limitationswill yield

a further increase in experimental sensitivity.41

The assigned 1H,13C correlation spectrum is represented

in Figure 5. The spectrally achievable resolution is obviously

very high and should pave the way for a detailed analysis of

structure and dynamics.

Determination of the Protein Tertiary
Structure
Aliphatic protons are most essential for the determination

of tertiary structure restraints. For structure calculation in the

solid-state, routinely, 13C,13C distance restraints,42 as well as

dihedral restraints, are employed.43 The precision of the

calculated tertiary protein structure benefits in particular

from long-range restraints involving side chains. Due to their

peripheral localization, protons are ideally suited to deliver

nontrivial distance restraints. 1H,1H distance restraints can

be obtained in XHHY (X, Y = C or N) type experiments.12,44,45

These experiments suffer, however, from a low signal-to-

noise level due to the detection of low-γ nuclei.

In uniformly labeled samples, long-range interactions are

difficult to obtain due to the truncation of the dipolar cou-

pling. Therefore, labeling schemes are exploited that rely on

spin dilution.42 In RAP samples, the proton spin system was

diluted to enable high-resolution proton detection.26

In the experiment, a first proton evolution period is

followed by a 1H,1H magnetization mixing step, utilizing a

rotor synchronizedadiabaticRFDRmixing scheme (Figure6A).31

After mixing, magnetization is transferred to 13C for chemical

shift evolution and finally to 1H for detection, using a scalar

FIGURE 4. Two-dimensional strips extracted from the 3D 1H-detected CCH (left) and the 13C-detected HCC correlation experiment (right) recorded for
a 15% RAP sample of the R-spectrin SH3 domain.30 1HN as well as 1HR chemical shifts can be unambiguously assigned by correlating 13CR to
13Cβ/13CO chemical shifts. Reproduced with permission from ref 30. Copyright 2012 Springer.

FIGURE 5. Assigned 1H,13C correlation spectrum of a 25% RAP sample
of R-spectrin SH3. The spectrum was recorded at a magnetic field
strength of 20.0 T (850 MHz) and a MAS rotation frequency of 40 kHz.
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HMQC type sequence. Figure 6B shows the experimental

results, focusing on correlations involving Leu10, Ala11,

and Met25 in the hydrophobic core of R-spectrin SH3. The
13C resolved 1H(ω1),

1H(ω3) planes show all expected correla-

tions between Met25ε, Ala11β, Val53γ2, and Leu10δ2.

The structure of the protein is represented in Figure 6C.

The shortest methyl�methyl proton distances are between

4.5 and 5.6 Å. Similar approaches for determination of pro-

ton�proton contacts were proposed, employing perdeuter-

ated and selectively methyl labeled samples.25,47�49

13C Backbone and Side Chain Dynamics
Globular proteins are typically tightly packed; however, they

can undergo substantial motion on the pico- tomicrosecond

time scale. Often, this motion is linked to function.50 In the

past, we and others have suggested approaches for the

quantification of dynamics in the solid state.24,51�74 For

the most part, these experiments rely on 15N, which can

be treated as an isolated spin in the protein structure. Even

though 15N is a very attractive nucleus to study the dynamic

properties of a protein, it comprises at the same time a

number of disadvantages: 15N related experiments contain

no information on side chain dynamics. In a protein, the

amide is typically incorporated into a hydrogen bond either

to a carbonyl group within the protein or to a water

molecule. This particular property might have an impact

on the extracted experimental dynamic parameters. Most

importantly, however, the number of possible motional

parameters exceeds by far the number of experimental

relaxation parameters that can be measured if only 15N is

considered, even if experiments at multiple magnetic fields

are performed. More observables are needed to allow for

an adequate analysis of differential motional models.

Obviously, backbone and side chain carbon spins are in

principle good candidates. However, care has to be taken to

ensure that 13C spins are not directly coupled and, at the

same time, that the proton spin system is dilute enough to

prevent proton relayed interactions.

To obtain information on incoherent processes,measure-

ment of T1 times under fast magic angle spinning conditions

was proposed,67 since spin diffusion scales inversely with

the MAS frequency.75 However, spinning only at 60 kHz

was still not sufficient to eliminate spin diffusion in uni-

formly protonated and 13C labeled proteins, as shown

for GB1.67

In addition to fast spinning, deuteration canbeemployed,

which chemically suppresses spin diffusion.76 The herein

discussed RAP labeling scheme yields uniformly 13C labeled

proteins in a deuterated matrix and is, therefore, ideally

suited for the quantification of aliphatic 13C T1 times in a

FIGURE 6. Three-dimensional H(H)CH correlation experiment for the determination of long-range 1H,1H distances in the solid-state. (A) The pulse
sequence is based on a solution-state 1H,13C NOESY�HMQC experiment. For 1H,1Hmixing, a rotor synchronized adiabatic RFDRmixing schemewas
used.31 (B) Two-dimensional strips along the ω2-

13C dimension of M25ε, A11β, V53γ2, and L10δ2 using a 5% RAP sample of R-spectrin SH3. (C) The
local proximity of those residues is illustrated using the crystal structure (PDB 1U06).46 Reproduced with permission from ref 26. Copyright 2010
American Chemical Society.
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protein and at the same time facilitates the application of 1H

detection schemes to improve the experimental sensitivity.

In contrast to 15N spectroscopy, which primarily targets the

amide backbone, the aliphatic spectrum includes back-

bone as well as side chain resonances. The excellent

dispersion in the aliphatic region and the feasibility to

obtain a full assignment (Figure 5) is a prerequisite for

any analysis of dynamics.

Figure 7 shows 13C T1 decay curves for a 15%RAP sample

of R-spectrin SH3. The experiments were recorded at a MAS

frequency of 50 kHz. The T1 times for backbone and methyl

carbons differ by almost an order of magnitude. The dipolar

coupling is a direct probe for sub-microsecond motions

because its amplitude is averaged by motions on the re-

spective time scale.77 In the solid-state, various schemes

were introduced to recouple dipolar interactions during

MAS.62,78�81 It turned out that a REDOR type experiment82

yields the best performance for deuterated proteins in

terms of insensitivity to rfmiscalibration, rf inhomogeneity,

and I/S spin CSA.72 The REDOR sequence was applied so

far to perdeuterated and selectively ILV methyl labeled

samples.69,71 We show that RAP labeled samples yield at

the same time order parameters for all aliphatic sites and
13C T1 times, using the same sample (Figure 7). A detailed

description of the experimental determination of 13C re-

laxation and order parameters using RAP samples will be

given elsewhere.

In the future, analysis of proton and carbon spin dilute

protein samples will enable a detailed characterization of

backbone and side chainmotionwith the aim to get insights

in the underlying motional models.
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